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A ROAD MAP OF METHODS FOR APPROXIMATING SOLUTION S _________
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Abs tract 

~f I T~Numerical methods for approximating solutions of two—point

boundary—value problems for ordinary differential equations are

surveyed . Specific complete algorithms are classified according to

how the original problem is transformed, how the transformed problem

is modeled discretely, and how the discrete model is solved. Relation-

ships among various complete algorithms are presented. Convergence

acceleration, error estimation and control, and parameter selection

are also discussed.

Key Words: Boundary—value, ordinary differential equations,

numerical methods.

1. INTRODUCTION

I intentionally avoided calling this paper a “survey” because, having

once worked as a surveyor , I know tha t a survey of a city gives an extremely

detailed description of the precise layout of the property in that city

Departments of Mathematics and of Computer Sciences and Center for
Numerical Analysis at The University of Texas at Austin. Research supported
in part by the United States Off ice of Naval Research under Contract
N00014—76—C—0275; reproduction in whole or in part is permitted for any
purposes of the United States government.
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and is not very helpful to someone trying to find his or her way around

town. Analogously, presenting all the details of various implemented

methods for solving boundary—value problems can obscure the concepts.

It is also true, however, that a coarse aerial photograph of a city is

a poor guide for the lost traveler, and, analogously, a very abstract

model representing all methods for boundary—value problems is too general

to impart much information. What both the traveler and the student of

numerical methods need Is a useful roadmap with not only enough detail

to show the various points of interest but also enough perspective to

show where these sites lie in relation to one another. Here I present

my own such roadmap of what some numerical methods for boundary—value

problems are, of how they relate to one another , and of what areas need

development in order to improve methods. (My use of “I” as the first

word of this paper is also intentional: the reader is to be warned that

this is the personal view of one individual.)

Now, what kinds of boundary—value problems are we to consider? In

the spirit of the first paragraph I want to present neither a single

abstract problem including all cases nor a vast list of specific special

problems. I will discuss instead a couple of model problems for which

the solution methods will share many features with methods for the

panorama of distinct problem types: eigenvalues, non—linear boundary

conditions, rn—t b order equations , systems of equations for vector—valued

functions, mixed—order systems, infinite—intervals for the independent

var iable, singular problems, singular—perturbation problems, multi—point

boundary conditions, et cetera. I will consider both the first—order

system for the n x 1 vector valued funct ion r

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

__________________
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(1.1) y’(t) f(t,X(t)) for 0< t < 1

and the second—order scalar equation:

(1.2) y”(t) fft,y(t),y’(t)) for 0< t <  1

since numerical methods on the first—order system equivalent to (1.2)

usually are dramatically less efficient than methods directly intended

for second—order problems; note that I restrict myself to a finite range

for the independent variable and I use 0< t< 1 as a canonical interval.

Boundary conditions for (1.1) are given by n nonlinear equations

involving y(O) and y(l):

(1.3) b(y (O) , y( l ) )  0

in vector notation. For (1.2) we give two nonlinear equations relating

y(O), y’(O), y(l), and y ’ (l),  which we can express in vector notation:

(1.4) ~ (y(O) , y ’(O), y(l), y’(l)) g

In many cases the boundary conditions will in fact be linear, in which

case we replace (1.3) with

(1.5) 8~~ (0) + !l~~’~ 2

where B and B are n x n  and e is n x l , while we replace (1.4) with—0 — 1 —

(1.6) + g0y ’ (o) + 21y(1) + d1y ’(l) —
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where 
~~~~~ , g0, 

~~~~~
, 

~~~~~~ 

and a are all 2 x l ;  these special forms can

~, useful computationally. Another common and computationally advan-

tageous situation is that in which the boundary conditions are separated,

sø that conditions at t 0  and at t— l  do not interact. In this

case we can write (1.3) and (1.5) as

( 1.7) — 

~o’ ~~~
(‘) — Li

where is q x n , 
~l 

is ( n — q ) x n , 
~~ 

is q x l , and is ( n — q ) x l ,

for some integer q with l<q<n. Similarly (1.4) and (1.6) become in

the separated case

(1.8) c
0
y(O) + d0y’( O) — a0, c1y(1) + d1y’(l) — a1.

Thus we will be considering either (1.1) with one of the boundary conditions

(1.3), (1.5), (1.7) or (1.2) with one of the boundary conditions (1.4),

(1.6), (1.8). In the interest of time and space we often will discuss

a method as applied to either the first—order or the second—order problem

when the analogous use of the idea of the method for the other standard

problem is fairly straightforward.

The next task and the main task of this paper is to describe how to

classify various methods. The “aerial photograph” approach would be to

note that the problem is simply to solve 
~

(
~

) — for ~ in some

appropriate abstract space and ~ some nonlinear operator, while numerical

methods eventually solve some discretization F
h

(x.fl) 2h for x.5 in

some discretized (finite—dimensional) space ; this doesn ’t really tell us

much about the structure of various specific methods. The “survey”

approach would be to describe computer codes implementing various specif ic
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methods; this gives us more detail than we can absorb. Instead I will

give a “road map” approach which defines a complete method as having

three aspects:

1) a Transformed Prob~~~

2) a Discrete Model of the Transformed Problem, and

3) a Solution Technique for the Discrete Model.

In Section 2 of this paper I describe various Transformed Problems

equivalent to (1.1) or (1.2) and their boundary conditions. Section 3

presents approaches for creating Discrete Models, while Section 4 outlines

some Solution Techniques. In Section 5 complete methods generated

by di ff eren t choices of 1), 2) ,  and 3) above are compared and some are

shown to be equivalent to others. Sections 6 and 7 briefly discuss the

important notions of accelerating convergence and estimating errors, and

of controlling errors by selecting the parameters upon which various

complete methods depend. A brief conclusion appears in Section 8.

Section 9 contains a brief collection of references. Since I am not

attempting here to give a historical or developmental view of methods,

I will not present a detailed bibliography but rather will indicate

selected references where more detail and more references may be found .

Good general sources of references are [Keller (1968, 1975), Aktas—

Stetter (1977) ]

I thank the many colleagues, especially Victor Pereyra and Andy White,

who over the years have influenced my view of numerical methods for

boundary-value problems. Although I would gladly blame mistakes on my

colleagues and take credit for any insight., unfortunately I must accept

responsibility for all the views expressed in this paper.

-

_ _ _ _ _ _ _ _ _ _ _ _



6

2. TRANSFORME D PROBLEMS

The basic notion of this paper is that a co~nplete method can be

viewed as the straightforward application of a fairly standard discreti—

zat ion process to a Transformed Problem that is equivalent to the original

boundary—value problem. From this perspective we will describe the

classical shooting method, f or example, as the application of standard

numerical methods for initial—value problems and for nonlinear equations

to the Transformed Problem of finding the proper initial values so as to

satisfy the boundary conditions. In this Section we examine several

Transformed Problems .

2.1 No transformation. For completeness we mention the trivial case of

applying no transformation, so that the Transformed Problem and the

original problem coincide. This allows us to discuss complete methods

which appear to be frontal assaults on the boundary—value problem.

2.2 Variational problems. Many boundary—value problems arise in the

physical sciences as the variational or Euler—Lagrange equations for

problems in the calculus of variations [Courant—Hilbert (1953)]. For

example, consider the problem of minimizing

tl
(2.1) JLy] — J { ~ (y ’( t))~ + F(t ,y ( t ) ) }d t

2

for all sufficiently smooth functions y satisfying the linear and

separated boundary conditions

(2.2) y(O) — a, y( l )  — b

Then the theory of the calculus of variations shows that 

~~~~~ - - .
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(2 .3 )  y”(t) — f(t,y(t)) for O < t < l , y(O) a, y( 1) b

where f(t,y) — F(t ,y). Thus the ‘alculus of variations problem of

minimizing J in (2.1) reduces to a special form of the boundary—value

problem (1.2) in which no y’ term appears. Conversely, certain

boundary—value problems (2.3)——for example , those in which ~~~~ for

all t and y——are equivalent to minimizing J [y]  and are perhaps more

naturally described as such variational problems. In this case, we

change the original boundary—value problen. to the Transformed Problem :

find a function y minimizing J[yJ in (2.1) subject to conditions (2.2~ .

2.3 Shooting and its variants. We consider first here the simplest form

of shooting applied to the first—order system (1.1) with boundary condi-

tions (1.3), that is

= f(t ,y) , for O < t < l , b(y(O) ,y(l)) = 0

We choose an initial—value vector z that is nx l and let v(t;z) solve

(1.1) subject to the initial condition

~(0;z) — z

The original problem now can be restated as the Transformed Problem : find

an n x l  vec tor ~ so that 
~
(
~
,y(l;&)) ~~. We have replaced a boundary—

value problem for differential equations 4th a single system of nonlinear

equations (and an intermediate problem of finding ~(l;z)). It is easy to

see one of the potential difficulties in using simple shooting (independent

of the numerical technique used to compute 
~~~~~~ 

by examining a variant

of shooting called superposition [Scott—Watts (1977)].
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Suppose that our first—order system (1.1) is linear with linear

boundary conditions (1.5) so that

(2.4) y ’(t )  = A ( t ) y (t )  + g(t) for O < t < l , B0
y(O) + B

1
y(l)

where A is nxn. We let Y( t) be the nxn fundamental solution matrix

satisfying

Y’(t) = A(t)Y (t) for O < t < l , Y(0) = I

and let the n x 1 vector p be any particular solution to

= A(t)p(t) + g(t) for O < t < 1

Then every solution to (2.4) is of the form

(2.5) y(t) = p(t) + Y(t)x for O < t < l
= — = C

for some nx l vector x independent of t; this representation merely

writes y as p plus a linear combination of a linearly independent

set of solutions to the homogeneous equations. The boundary conditions

now merely become the linear algebraic equations for x:

[B
0+B

1
Y(l)]x 2 ’~~~~

(0) 
~~~~~~

To determine ~ it 18 essential of course that 
~o~~ iX(l) be non—

singular; the difficulty can be that the numerical computation of ~ 4
causes the crucial matrix to become singular. For example, while

‘1

5-
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lOt lOt —lOte e —e

[e
]0t_e 1Ot e1Ot 

is non—singular for every t , because of

round ing errors a computer representation of this matr ix will become

r5 lOt lOt
l e  e

the singular matrix 

[e~~
t elOt 

for t much larger than unity.

Thus simple superposition can have d i f f icu l t ies; since from (2 .5 )  we see

that y(O) = p(O)+x, the coefficients ~ are nearly the initial  values

~ of shooting, and indeed x=z if p(O) 0, so we see that the same

potential difficulty is inherent in shooting.

From the shooting viewpoint, a way out of this problem is multiple

shooting [Keller (1968] In which we we simultaneously shoot f rom k

distinct t values 0 T ~< <T
k
<l . That is, for arbitrary nx l

vectors Z
1~~

• •
~~~

Z
k 

we let y
1
(t;z .) for l~~ i � k  solve y~ ( t )  C f ( t ,y~~(t ) )

for T~ < t < T
I+l 

(with Tk+l 1) subject to the initial conditions

y 1(T 1;z .) — z . . The original problem now can be restated as the Transformed

Problem : f ind  k n x l  vectors 
~l ’ ’~ k so that  

~~~~~~~~~~~~ 
°‘

y (T ;z ) = z 5 for  1~~ i~~ k—l , a sy cern of k n  equations for the k n
*i 1+1 —i =1+1

unknown components of z
1
,... ,z~ . The hope is, of course, that the

and T1 can be chosen so shrewdly that the numerically singular matrices

mentio ned in the preceding paragr-~ph do not arise.

From the superposition viewpoint we can use mult i ple start ing points

0< T2
< <T

k 
< 1 as well. We merely represent ~ for T

i ~ t 5

by ~~(t )  Y 1( t ) x1 + p1(t) where p1 18 a particular solution of the

inhomogeneous equation on T j < t < T j+1 and is a fundamenta l  so lu t ion

there solving 
~j 

— 
~(t)X 1 with 

~1
(T

i
)u. Xi 0 for some given non—singular



10

matrix Y~ o . Recalling that we need to satisfy the linear boundary conditions

~~~~ +~~~~(l) =e and the continuity conditions for y(Ti) which become

(2 .7 )  
~i_1

(T
i) + 

~~~~~~~~~~~~~~~~~~~~~~~~~ 
for 2~~i~~k

we see that we again have kn (linear) equations for the kn unknown

components of 
~~~~~~~~~~ 

Since and are the unknowns in (2.7)

we see that the system of linear equations we must solve is essentially

block bi—diagonal with Xi....1
(T
i) and 

~1,0 appearing as the blocks.

Just as for simple shooting and simple superposition , if we choose

and p1(T.) =0 then the coordinates in multiple superposition equal

the initial values z. in multiple shooting. Other choices of and

p1
(T ..) are possible however. In the so—called re—orthogonalization method

[Sco t t—Wat t s  (1977)] , 
~~~~~~~ 

and each subsequent 
~~~~ 

is chosen as the

Gram—Schmidt orthogonalized version of Y
11

(T~). Thus we decompose

as

~~_1 (T 1) =Q~~

for  orthogonal and upper—right triangular and then let Y
1

(T
1
) =

In th i s case the equations ( 2 . 7 )  for the coefficients

become

+ 2ih~i—l - 2 + 2i~i

and mul t ip ly ing  by the inverse of the orthogonal matrix Q1 gives

T
(2.8) 2~~i 1

(T
1)+ 

~i~i l~~~i
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Thus in the case of the re—orthogonalization method the nearly block

bi—diagonal matrix describing the equations for x1,
5 

‘
~~~~~ 

has the

vt~r v  simp le blocks I and R1, making solution of the system quite simple.

Whatever variants we take of simp le shoo t ing ,  they all reduce the

origina l boundary—value prob lem to a Transformed Problem of determining

a finite set of numbers——i r x or z1, ” ~
Zk or Xl.~~~~

Xk.

2 .4  Quasi-linearization. Ma thematicians are well known as people who , when

they cannot solve a certain difficult problem, instead solve some easy pro-

bl em in the hope tha t this will somehow be profitable. 4pasi—linearization

[Beliman—Kalaba (1965)], often known as Newton ’s me thod , is the application

of this ploy to create Transformed Problems simpler than an original diffi-

cult nonlinear boundary—value problem. The idea is that, given one approxima te

solution y . ( t )  to the first—order system (1.1), uith general boundary

conditions (1.3), we approximate the differential equation (1.1) for y

near y
1 
by the linear (in 

~j+1~ 
d i f f e ren tial equation

(2.9) y~~ 1
(t) f(t,v .(t)) + -~--— (t ,y.(t))(y.~~1(t)—y.(t)),

where -
~~

--- is the n x n  Jacobian matrix of ~ with respect to ~~~. Similarly

we approximate the boundary conditions (1.3) by the linear (in 
~1+1~ 

bo undary

condi t ions

~~~~~~~~~~~~ 1O,~~
(
~i+1~°~ ~~~~~ l,i~~i+l~~~ 

_
~~~j

( i ) )  Q

(2~ lO) 
~o , i ~

y (O)

~l,i 
— 

23Z(l)  b(y1( O) ,y
1

( l ) )

The equations (2.9), (2.10) comprise a linear boundary—value problem for

of the same form as (2.4). As usual with Newton’s method , the hope
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is that the sequence of functions y0,y 1 ,... converges to y solving

(1.1), (1.3); under reasonable conditions on f and b this does indeed

occur if the initial guess y
0(t) is sufficiently close to y(t). Thus

we have reduced the original nonlinear boundary—value problem to the

Transformed Problem : solve a sequence of linear boundary—value problems

for 
~~~~~~~~~~~~~~~~~~~~ 

converging to y.

At this point notice that we can easily speak of Transformed2 Problems

whenever the Transformed Problem is transformed again; this occurs for

example if we use shooting or superposition as in Subsection 2.3 to solve

each of the linear boundary—value problems (2.10). Some methods designed

onl y for linear problems can thus be used with quasilinearization on

nonlinear problems [for example , see Scott (1975), Scott—Watts (1977)].

2.5 Continuation and embedding . In many real problems the differential

equation (and perhaps the boundary conditions) depends on certain physical

parameters , and solutions are desired over a range of values of these

parameters. If this is not the case , it is usually possible to think of

the problem ~s being for one specific value, say X~ , of some physically

meaning ful parameter A which we can imagine being allowed to vary. In

rare instances an artificial parameter may need to be introduced by, for

example , considering y’ = ~(t ,y) as the problem when ~ = = 1 is sub—

stituted in the equation y’ Af(t ,y). In any case we suppose that we have a

family of differential equations

(2.11) y’ =i (t ,y;X)

whose solution y(t;A ) is especially desired for A = A F and perhaps for

many other values of ~ as well.
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In the continuation method we assume that (2.11) can be solved

easily for some value A 0 of the parameter. Assuming A O <A F for

convenience , we then set out to solve (2.11) for a sequence of k values

of A , say A 1 = A 0
<A

2 < <A ~ = 
~~ 

If A 1+1 is “near” A 1, the hope is

that (2.11) for A A .+l 
can be solved fa irl y easily by making use of

the already obtained solution y(t;A 1) at A CA 1. Thus we have replaced

the original boundary—value problem (1.1) by the Transformed Problem:

solve (2.11) for a sequence A 0,A 1,~ “~
Xk of values of the parameter A.

This is a useful device whenever one can use y. to advantage in obtaining

since any numerical method will require solving some nonlinear

equations for the approximation to 
~i+l’ 

the approximation obtained for

can usually be used as the first iterate in an iterative method for

solving these nonlinear equations for ~~~~~ For example, quasi—linearization

migh t be used on (2.11) at ~ = A
1+1 

with the solution at A = as the

starting iterate.

Another approach to solving (2.11) for A A
F 

is to use the embedding

method [Scott (1973,1975)1 which derives differential equations for the

dependence of ~~( t ; A )  on A. While this usually results in nonlinear

~artia1 differential equations for as a function of t and A , the

side conditions often can be chosen to be initial conditions since we

assumed the problem to be easily solved initially at A — A 0. Thus the

original ordinary differential equation boundary—value problem is replaced

by the Transformed Iroblem : solve an Initial—value problem for a partial

differential equation involving ~ as a function of t and A.

A wide variety of these embedding methods have been used depending

on precisely how A enters the differential equation . A very co on

pract ice is to use the interval length over which t varies as the 

_ _ _ _
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embedding parameter; it is for this case that I will restrict the use of

the broad term invariant embedding (Scott (1973,1975)1. Thus we think

of the family of problems defined for 0 < t <A and we let A range from

zero to unity. For (1.1) subject to (1.3), for example, we instead consider

= f(t ,y) for 0< t <A with b(y(O),y(A)) =0.

When A =A 0E 0 this reduces to the system of n equations b(y(O),y(0) ) =~~~

for the n unknown components of Z(O;A o) which is assumed to be our

“easy’t problem. When the original differential equation (or boundary con-

dition) is nonlinear , invariant embedding yields a nonlinear partial

differentia l equation. To avoid this difficulty the computationally most

successful approach appears [Scott (1973 , 1975)] to be to develop invariant

embedding for linear problems (which turn out to lead to ordinary differen-

tial equations when invariant embedding is used) and then to use quasi—

linearization as a device for replacing nonlinear problems by a sequence

of linea r problems, each of which is transformed and solved by invariant

embedding; of course this can be viewed as just one possible device for

solving the nonlinear partial differential equation. For the rest of this

section we restrict ourselves to a consideration of the linear second—order

equ at ion

(2. 12) y ” ( t )  + p ( t ) y ’ (t) + q ( t ) y ( t )  — g (t )  for 0 <  t <A

subject  to separated l inea r  boundary conditions

(2.13) c
0y(O) +d0

y’(O) — a0, c1y(A)+d1y’(A) — a 1

as in (1.8); the solut ion to (2.12), (2.13) is y(t;A) and It is desired
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for oS 51. General linear b oundary conditions can be handled as well.

The simplest invariant embedding method for (2.12), (2.13) is the

swe~p or factorization method in which we introduce two auxiliary functions

~~( t )  and ~ (t) for O 5t~~l and set y’ =~~y +~~; it turns out that c~

and ~ must satisfy

~ ~~~
‘ (t) = -q(t) - p(t)a(t) - ~

2(t) for 0< t <1 , a(O) =

(2.14)

~ ~~
‘ (t) =g(t) — (p(t) +a(t))~~(t) for 0< t <1 , ~(O) =

0

(If  d0 — O , a slight ly d i f fe ren t  method is used.) Having computed c~ and

~ from (2.14), applying y’ =cty +~ at t = A  along with the boundary

condition c1y(A) +d 1y’(A) = a1 gives us two linear equations which we

solve for the unknowns y (A;X) and y’(X;X). Having found y(A ;A ) and

j(t),~~(t) for O � t � A 5 l  we finally solve

(2.15) y’(t;A) = a(t)y(t;A)+~~(t) for 0 < t < A

in the backward direction starting from the recently found value y (X;X)

for y(t;A) at t = A . This gives the desired solution y(t;A) for

O ~ t ~ A. Note that the initial—value problems for c~ and ~ need only

be solved once. Thereafter , to find y(t;A) for any A only requires the

solution of the two linear algebraic equations for y(A;A) and then

integration of one backwards initial—value problem (2.15) for y.

Experience has indicated (Scott (1975)] tha t a somewhat more complex

invariant embedding method is better than the sweep method above. In

this version four auxiliary functioi~ r1, r2, 
~l’ 

and 
~2 

are introduced

in such a fashion that

I

_ _ _ _  V ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~
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~ 
y(t;X) r

1(t)y
’(t;A)+r 2

(t)
(2.16)

I y’(O;A )—a 1(t)y ’(t;A)+s2(t)

From (2.16) we see that if we know r1, r2, 
~l’ 

and 
~2 

f or 0~~t~~l

and if we know y’(O;A) then (2.16) gives

y’ (O;x) —

(2.17) y(t A) ~1(t) s
1(t) 

+r
2
(t)

which expresses y(t;A) in terms of known quantities. To determine

r1, r2, 
~l’ 

82, and y ’(O;A) we proceed as follows. We find r1, r2, s1, 
~2

for 0 5 t 5 1 by solving the initial—value problems

r~(t) = l+p(t)r
1
(t) +q(t)r~ (t), r

1
(O) =0,

r~(t) = q(t)r1(t)r2(t), r2
(O) = 1,

(2 .18)
s~ (t) = (p(t) +q(t)r

1(t))s1(t), si
(0) = 1,

s~ (t) = (—g(t)+q(t)r
2
(t))s1(t), s2(O)=0.

To obtain y ’ ( O ; X )  we use the two equations of (2.16) for t A  and we

also use the two boundary conditions (2.13) ; this gives four linear

algebraic equations from which we evaluate the four unknowns y(0;A),

y’(O;A), y(A ;A), and y’(A;A). Note again that the initial—value problem

for r
1
, r2, 

~l
’ and are solved only once; thereafter for any value

of A we need only solve the four algebraic equations to find y ’ (O;A )

and substitute into (2.17) to obtain the full solution y(t;A ).

V

1J 

_ _ _ _ _ _ _ _ _ _ _ _  
_ _
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Thus for both the sweep method and Scott ’s version of invariant

embedding, we replace the original boundary—value problem by the

Transformed Problem: solve three or four initial—value problems (for

ordinary differential equations) and one small linear system of algebrai c

equations.

2.6 Integral Equations. By using an appropriate Green’s function we can

transform our original boundary—value problem into an integral equation.

As an illustration, consider the second—order problem (1.2) subject to

linear boundary conditions. Usually by subtracting from y an appropriate

linear fu.nrtion,we can force the boundary conditions to be homogeneous.

We therefore consider

(2.19) y”(t) = f(t,y(t),y’(t)) for 0<t< 1

subject to the homogeneous version of (1.6), namely

(2 .2 0) ~0y(0) + d0y ’ (O) + + ~1y’(l) =

If y 0  is the only solution to y” —O subject to (2.20) then we can

find the Green’s function C(t,T) so Lhat y”(t) — g(t) and y satisfies

(2.20) if and only if

,1
y(t) — J G(t,t)g(t)dt.

Applying this fact to g(t) - f(t ,y(t) ,y’(t)) in (2.19) yields the fact

that y solves (2.19), (2.20) if and only if y solves i
:
~~~

fl
(2.21) y(t) — J G(t,T)f(T,y(T),y’(t))dt for 0~~t5l

0 H

V ~~~~~~~~~~~~ 
_ _ _ r _,

~~
_ 

- - 
V 

— — ——

- .~~~~~~rA- -~~~
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In this generality we have replaced (2.19), (2.20) by an inte~ro—

differential equation. For the important class of problems in which f

is independent of y’, (2.21) becomes the integral equation

rl
(2.22) y(t) — J G(t,T)f(T,y(T))dT for O StSl .

0

Thus we replace the original boundary—value problem by a Transformed

Problem: solve for y in the integro—differentlal equation (2.21) or

in the integral equation (2.22)

3. DISCRETE MODELS OF TRANSFORMED PROBLEMS

We have seen a few of the many ways in which our original boundary—

value problem can be transformed into an equivalent problem ; now we

want to discuss methods for launching a frontal assault on the Transformed

Problem . Although there are other methods available (Aktas—Stetter (1977)],

I will restrict myself to the most successful methods , namely f ini te

differences and projections, as approaches to discrete modeling.

3.1 Finite Differences. The basic idea here is to represent desired

functions g(t) for 0~~t�l by the values of g at some finite set of

points 05t 1
< t

2
< <t

1~...l. We approximate g(t~) by some number

and generate relationships among the values intended to model what

the (transformed) problem tells us about g. Such modeling methods are,

of course, very well known: we generally replace der ivatives by divided

differences, integrals by quadrature sums, et cetera. We look briefly

at the models that result when finite differences are used with the 
V

Tranformed Problems of Section 2.

- ~~~~ - -~ - - ~~~~~~~~~~~ - -~ — V
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Finite Differences for the Original Problem

Basic finite differences for the original boundary—value problem

are, of course, very well known. For the first—order system (1.1), for

example, we discretize by letting ~1 = 0 < < <t
N = 1 and letting

the n x l  vector Z
~ 

approximate Y(ti). Two simple, natural , and

effective schemes are to model the differential equation (1.1) either by

(11÷1 — Z 1) / (t i+1 — t .) = 4f(t1,Z1)+  4 f ( t i+i, Z .+1)

(3.1)
for l5i~~N—l

or by

~~i+l ~~ i
)/(t

1+1 
— t

~
) =~ ( 4 ~1 + 4 ~~~~~ 4 ~ 

+ 4
(3.2)

for lSiSN— 1

and to model the nonlinear boundary conditions ~(~ (O),y(l)) 0 in (1.3) by

(3.3) 
~~~~~~~~~

Under reasonable hypotheses, of course, this is a second—order method ,

that is,

(3.4) j
~
Zj-y(ti)L S ch2 for lSiSN , c independent of N ,

where throughout this paper we use h to denote

(3.5) h — ma x {I t i+1 — t 11; lS i SN—l}.
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Higher order methods of course exist using more complicated difference

approximations for y ’ and/or more complicated sums of values of f.

Such methods can even be generated automatically as in the HODIE method

[Lynch—Rice (1977)].

Since the nonlinear equations (3.1), (3.3) or (3.2), (3.3) are

often solved by some linearization process and, since linear problems also

arise naturally, it is instructive to look briefly at the structure of,

say, (3.2) and (3.3), when the problem is linear. We therefore consider

again (2.4), namely

y ’( t )  = A(t)y(t) + g(t), 80y(O) + B1y(l) = e

Writing hj=t j+i — t j, Ai 
= 4 A(t~~+ h

1
/2 ) , and g1

=~~(t~~+h1/ 2 ) ,  the

equat ions (3.2), (3.3) take the form

(
~
_h

1~ i
)
~ i+1 

— (I+h iA ) Z  + h
1
g
1 

for l~~i~~N—l

~0~l 
+ 

~l~N 
-

In block matrix notation , this is 

~l ~l

—P M 0 0 Z h g.1 —1 — — =2 1_ i

(3.6) 2 £2 ~2 2 — h2g2

2 2 £N-1 ~N-l ~N] 
hN . . 1 N 1

_ _ _ _ _  V



invo1vin~ an almost (exceot for the first block row) bi—diagonal matrix ,

where 
~i

=
~~

+h i~ i, ~i~~~
—h i~ i . Although N may be quite large in

order to obtain much accuracy, the special structure of the Nn x Nn matrix

in (3.6) allows the system to be solved efficiently.

Finite Differences for Variational Problems

We saw in Subsection 2.2 that second—order problems (1.2) subject to

separated linear boundary conditions (2.2) and not involving y ’ explicity

in the differential equation are often equivalent to minimizing J [y] in

(2.1). Since J involves an integral and a derivative , the natural finite

difference approach is to use a quadrature sum and a divided difference.

A simple example is to let the ixi vector 
~~ 

approximate v(t1) and to

let the vectors be chosen to minimize

(3.7) J~(z] - ~ h 1{ 4 [(Z j+1
_ Z

i)/(ti÷i
_ t

i
)] 2 + F(ti,Zj) }

i—i

subject to

— a, ZN 
— b

More complicated differences or quadratures lead to more involved functions

(VJ~~~I to be minimized .

Finite Differences for Shooting and its Variants

All of the variants of shooting described in Subsection 2.3 involve 
- 

- 
-

solving some initial—value problems for ordinary differential equations

as an Intermediate step on the way to solving a set of algebraic equations.

Finite differences can come into play be provid ing a way to solve these

— - r~~~~~~~— -. — 
— -

- -l - 
~ _i_~ _ _ 

- -
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initial-value problems approximately. Any of the high quality initial—

value codes such as those for variable—order Adams methods or Runge—Kutta—

Fehlberg methods can be used to solve the initial—value problem . As a

trivia l examp le for multiple shooting we can replace y
~ 

= f(t,y
1
(t)) for

T1 
<t <Tj+l and 1 5 1 5 k—i by

1 1 1
(3.8) 

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
=~~(~~ t

1~~~ 1
+ 

2~~i,j+ l~~ 2~~i,j~

where approximates ~(t1~~
) and

Ti 
= t1 1

< ti 2 < < tj~~ = Ti+i

and we can replace the initial conLition y
~

(T
1
;z
i
) —

~~~~ 

with

(3.9) 
~1,l

Given the initial data for multiple shooting we can use (3.8) to

evaluate successively 
~
i,2’

~
i,3 ’ ’

~
i,Ni 

from 
~i l ~~~ j

• For example ,

in the linear case in which the original equation is

y’(t) — A(t)~~(t)+g(t) for 0< t< 1, B y(0)+B Z(l)—e
= — = = 0= —1 =

and in (2.4), the recursion (3.8) becomes merely

(310) M Z —P Z —hj,j i,j+l i,j i,j .L,joi,j

where

~~~ —~~~~~
— 

~ 
h
1 ~~

(t
i 
~ 

+ 4 h1~~). ~~~ —
~~~

+ 4 h1 j~~(ti ~ +4h~~~).
~~~~ 

~~~(t1~~ 
+ 4h1~~, and hi j  ~~~~~~~~~~~~ 

.

- - - ~~~~ — V 
- - V - - 

- - - - - -~~~~~- - -~~~~~ - -- - - —
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Because we are using shooting we must also satisfy Lhe continuity conditions

(3 .11 )  
~1 ,N . 

= 

~i+1,l

and fina liv the boundary condi tions

(3 .12) B Z  + B Z
~0u~l ,1 = l k ,N~ —

Finite Differences for Quasilinearization

Quasilinearization discussed in Subsection 2.4 merely transformed

the original nonlinear problem to a sequence of linear boundary—value

problems . We can therefore use finite differences , for  examp le as in

(3.6), to solve each of these linear problems . In many cases using

finite differences on the linearized differential equation as described

here is the same as linearizing the nonlinear equations that result from

app lying finite differences to the nonlinear differential equation .

Fin ite Differences for Continuation and Embedding

Finite differences Lan be used on the continuation problem just as

it was on the original (untransformed) problem. On the other hand , for

the embedding methods we needed to solve initial—value problems like

(2.14), (2.15), or (2.18). High quality finite difference methods for

initial—value problems can therefore be applied to solve these just as

for shooting methods. 

- - 
-.~~~: - V V
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Finit e Differences for Integra l Equations

We saw in Subsection 2.6 how we could transform , for example , (2.19)—

(2.10) with f independent of y ’ into  the integral equation (2.22),

namely

~1y( t ) = G( t ,T)f(T,y(T))dT

Letting t1 
= 0< t

2 
< < t~J 

= 1 and approximating y(t
1) by Z1 as usual ,

we can rep lace the integral in the equation with a quadrature sum. Using

the simp le rectangle rule, for  examp le , yields

(3.13) = T~ ~~~~~~~~~~~~~~~~~~~~~~~~~~

As usual , more complicated q uadra ture formulas y ield solu tions of h igher

ord er accuracy .

3 . 2  Projections. As we saw in Subsection 3.1, various discrete problems

result from us ing finite differences on the various Transformed Problems .

Al though we considered six different types of Transformed Problems , there

were only four d i f f e r e n t ways f ini te differences were used : i) d irec t ly

on boundary—value problems (in the original problem , in quasi—linear ized

problems, and In continuation problems); i i )  on variational oroblems ;

iii) on initial—value oroblems (in shooting and its variants, and in

embedding methods); and iv) on integral equations. We will see in this

Subsection that the projection approach to discrete modeling gives different

models In the same four ways. FIrSt we sketch the projection idea Itself.

_ _ _  -V V
~~~~
_ _ _ _  - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ : - - - - -
- -

~~~~~~~~~~~~~~~~~~~~~~ :
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The projection approach can be viewed as a way to approximate the

solution to an equation

(3.14) Dx — F(x)

wher e D is a linear onerator from some linear vector space X into

some l inear vec tor spac e Y and F is a poss ibly  no n l inear opera tor from

X into Y. We choose to be s’onc finite dimensional subspace of X

and we le t Y
h 

be the finite—dimens ional subspace of Y defined by

Yh =DX
~n~ 

FinaH y let 
~h 

be some linear projection of Y into 
~h’ 

~~°

that is a linear operator for which 
~h~h~~~h 

for all 
~h 

in

The nain idea is to seek an approximate solution X
h 

to (3.14) in X
h

rather tha n in X; if X
h 

is in X
h 

however then Dx
h 

is in 
~h 

wh ile

gen*-rall y F ( x
h
) is not in so that (3.14) cannot be solved in

f t s t  cad we nodif y F (x
h
) to P

h
F ( x

h) to g e t  i t  into Thus we

approximate x solving (3.14) by x
h 

solving

(3.15) Dxh = PhF(xh)

a finite-dimensional problem. General theorems ar e  known on the existence

)t X
h 

and on the error X _ X
h 

; these theorems involve the ~3pproxima—

tion properties of the subspaces X
tV~ 

and 
~h 

and the precise nature of

the projection

For our problems , X and Y are spaces of functions defined on

O~ t -~ 1, and elemen ts of 
~h 

are usually repr esen ted as linear

combinations

1h al~~l
+a

2~ 2
+.

~~ 
+a~~’ V ~~~-

of simple basis functions 
~~~~~~~~ 

. . ,ø~ for of d imension L, so that

(3.15) defines a set of equations in the unknows 
~i 

,..., -

~~

_ _ _ _ _ _ _ _ _ _  

_ _  
_ 

_ _  

H
lily V— 

- - -- — -V - — — ______

V V -
~~~~
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Important choices for the subspaces Kb 
and 

~h 
are the spu me spaces

S(2,k,r). Here 11 is a set of break points 
~o

0
~~~1

<
~ 2 < <E~ = 0.

and k and r are integers with k~~0, r�—1 . An element of S(J1,k,r)

is a r times continuously differen tiable (often vector—valued) function

on 0:t~~ l which is defined by a (different) polynomial of degree at

most k—i on each interval 
~~~

. < t  ~~~~~~~~ A sufficiently smooth function

f on O S t S l  can usually be approximated by some spline c~ in S(fl,k,r)

to order k in the sense that max jf(t) _O (t)I. = ~ ( j V f l J
k ) where

O S t  5.1

max ~ ~~~~~~~~~~~~ An important fact is that every element of
o5i5~ —u ~~ I

S(fl,k,r)  can be wr itten as a linear comb ina tion of spec ial basis spl ines

(~~~~~~i~ es) each of which vanishes identically on all but a few adjacent

in tervals  ~~. 
<
~~ 

< E~1~~~
. Such a basis is called a local B—spline basis.

In prac tice the projection 
~h 

in to 
~h 

is usually def ined by 1)

colloca t ion cond it ions , ii) orthogonality (or Galerkin) conditions , or

iii) a mixture of collocation and orthogonality conditions. Collocation

conditions are of the form (P~y)(r~) =y(q) for certain values 
~

orthogonality (or Galerkin) conditions are of the form <P~
y_y ,’f’)=0 where

is some function and <.,.> denotes some inner product (usually

involving integrals) on our function spaces. We proceed now to discribe

briefly some projection methods .

Projection for the Origina l Problem , for

Quasilinearization , and for Continuation

As we saw in Subsection 3.1, the Tranformed Problems in these three

cases all are still explicitl y described as two point boundary—value

- 

——~ .;-- -- — - . - - .—--—--———-—--,—
~~

—--—--i-- 
:
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problems ; to be specif ic , consider

y’(t) = f(t ,y(t)) for O < t < l , B~~ ( 0 ) + B
1

y(0)  — Q

where we assume homogeneous boundary conditions for convenience. Here

we can think of the space X as , say C
1[0 ,1 j,  Y as C[0,l], the operator

D as ~j4~- , and the operator F as taking y into f(t ,y(t)). If we

take Kb to be the spline subspace S(I~,k,r) subject to our homogeneous

boundary conditions above, then Y
h
=DX

h 
is essen ti a l ly  S(i’,k—l ,r—l )

(subject to some boundary conditions). Therefore if denotes some

projection into this modified S(fl,k—l ,r—l), our projection reduces to

finding a in S (JT ,k,r) satisf ying

a’ = Ph
f(t,G), B~~ ( 0 ) + B

1~~(1)=O

if , for  example , 
~h 

is def ined b y some colloca tion cond itions =

y (~ ), then we impose

(3.15) ~‘(n) =

similarly an orthogonality condition migh t take the form

i l
(3.16) [a’ ( t )  — f(t,o(t))J~’(t)dt = 0= = = =

Note that if a is expressed as a linear combination of local basis elements

(B—splines),

— a
1~ 1 +~~

- • a~~ ~

then (3.15) for example becomes

- 

- - - -~~~~~~~~- - 

~~~~~~~~~~~~~~~~~~~~~~~~ ‘—- -V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



28

(3. 17) ~~~
1 (r

~) ~~ 
. . + i t j~ ( ‘ p )  — t( ‘‘l2’1’~

’
~ 

‘~‘ 
. . +

Since (‘-) ~1
(r~) — O except t ’ r  only a few subscri pts i because the

ri ’s form a local basis , only a, very f ew of the coef f i c ien ts a
i 

are

exp licit lv involved in each co1locati~ n equation. This imolies that

each equation in the sv~ tem (3.15) for a1 a
L 

in fact only involves

.i few this is what makes local bases important. Approxi-

mating v by elements of S(ILk,r), ~ is chosen carefully by carefull y

solecting collocation points q or orthogonality functions + , gives

orrors v~~cr of optima l order k for O S t S i .  In addition there are

usually special points in each interval 
~ 

of the grid II at

which much higher accuracy is obtained ~Dupont (1976)); this superconver~ ence

can be used to generate globa l approximations of this higher order , so

such results are important.

Pro o t ion for Shooting and Embedding

The important feature of the Transformed Problems produced by shooting

or embedding is that they are initial—value problems. The only effect this

has on the discussion just comp leted is to change the side conditions on

the splines to initial rather than boundary conditions . In other regards ,

colloc ation and Galerkin projection methods look the same here as for

problems wi th explicit boundary conditions . Thus we consider these no further.

Prolec tion for Integral Equations

If the Green ’s function Is used to transform our original problem ,

say of second—order , we end up with an integral equation

_________________ 
-— —

~~~

- ——-—

~~

——--——--- — ——

~~ 

—
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y(t) = I G(t,T)f(T,y(T))dT.
J O

In this case we can take X and Y to be ClO ,)), D I , and F as the

~1
mapp ing from y to J G(t,T)f(t,y(T))dT . Using splines a to approxi—

0
mate y and collocation , for example , to define our projection gives us

conditions like

C~ (fl) = J G(fl,T)f(T,O(T))dT.
0

Note in this case that even if we represent G in terms of local basis

functions the resulting problem is not sparse because of the terms

J
G(fl

~
T)f(T

~
al~~
(T)+...+aL&L(T))dT which have contributions from every a1.

Projection for Variationa l Problems

Although projection as I have described it does not strictly apply

to variational problems , the spirit of projection does apply. Recall from

Subsection 2.2 that we are considering the problem of minimizing
/

1 2J[y ] = { (y ’ ( t))  + F ( t ,y(t))}dtJo 2

subject to

y(0)  — 0, y ( l)  — 0

One of the ideas behind projection was to seek an approximate solution in

a finite—dimensiona l subspace. Applying the same idea here we replace y

by a1~
’
1 +”~ 

+a
L~L 

for some chosen functions 0
1’•••’~ L 

and then choose

~~~~~~~~ 
to minimize
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3’(a1,. . . ,a.) — J[a
1~1

+ 
~~

This is commonly called the Rayleigh—Ritz method . It is in fact strongly

related to a projection method since extremizing J is strongly related

to making VJ O; this is the same as using projection with orthogonality
rl

conditions determined by ~~ and the inner product (6,~,g)= J ~1
(t)g(t)dt.

0

4. SOLUTION TECHNIOUES FOR DISCRETE MODELS

This Section contains much less detail than its predecessors. Pri—

man ly I want to emphasize the fact that transforming a problem (as in

Section 2) and then developing a finite—dimensional discrete model of the

Transformed Problem (as in Section 3) do not a method make! There still

remains the formidable task of solving for the solution of the discrete

problem , and there are usually very many computational techniques for doing

this; only when the solution technique is known is the complete algorithm

for the boundary—value problem finally specified . Each of our discrete

models produced either a finite—dimensional minimization problem , or a finite

system of nonlinear algebraic equations, or a finite system of linear

algebraic equations.

Quite a number of distinct methods are available for minimizing a

function of several variables [Murray (1972)], the problem which results

from discrete models of the variational version of boundary—value problems;

conjugate direction and variable metric methods are among the most powerful.

Because our problems often have special structure , such as having many

variables and a sparse Hessian , techniques should be used which are designed

to make use of such structure.

V —~-
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Similarly many methods are available [Ortega—Rheinbold t (1970)]

for solving the finite systems of nonlinear algebraic equations which

resu lt from the original problem , the shooting, and the integral equation

approaches to boundary—value problems ; among the most popular are the

quasi—Newton update methods which essentially use Newton ’s method only

with rough approximations to the Jacobian matrix of the nonlinear system .

rhe systems arising from the original problem and from the Integral equa-

tion approaches usually have many more unknowns than In the shooting

systems. Systems for the original iroblem are usually sparse while those

for the Integral equation are usually dense. Again spec ial methods should

be used depending on the system ’s structure.

Since systems of linear algebraic equations often arise from methods

to solve nonlinear equations as well as from linear differential equations

with linear boundary conditions, methods for solving linear algebraic

systems are fundamental to solution techniques for our discrete models.

Again, although we often think only of straightforward Gauss elimination ,

there are many techniques available for solving linear systems. A wide

variety of iterative methods can be used , espec ially for sparse problems .

In addition , there are many choices as to how to perform direct elimination .

Consider , for example , finite differences for the original problem which

leads to a linear system as in (3.6) that is almost block bi—diagonai.

Different procedures result from considering the matrix as full , as banded ,

as block banded , et cetera ; these differ primarily in how much information

is retained about the location of zeroes. The work required and the accuracy

obtained will also differ among the procedures, and It is important to

determine which procedu res are “best ” for solving a given discrete problev~.

- 
- - - —j-, .~

_
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One of the importan t practical areas of investigation now is that

of determining which solution technique should be used on a given discrete

model. This is a vital area since the efficiency and accuracy of the

solution technique can make or break a complete algorithm; I have heard

of a high—qual ity multiple—shooting code which was improved by a factor

of ten by Improving its nonlinear equation solver.

5. RELATIONSHIPS AMONG COMPLETE ALGORITHMS

We have IndIcated that a complete algorithm is specified by three

“co—ordinates”: a Transformed Problen, a Discrete Model , and a Solution

Technique. Unfortunately, different sets of co—ordinates can describe

identical (or very similar) complete algorithms. In this Section 1 want

to indicate a few relationships among such algorithms. I will not compare

algorIthms in the sense of saying which is “better”, since that question

can only be addressed in terms of specific computer codes implementing V

tho algorithms , specific sets of test—problem classes, and specific

criteria for measuring “goodness”; there is a great need for such compari-

Sons to be performed with the same care that went into the testing of

codes for initial—value problems (Hull (1975), Hull et al. (1972),

Davenport et al. (1975)].

We remarked earlier on one equivalence among algorithms. In using

the Rayleigh—Ritz discrete model for the variational formulation of the

problem , if we set equal to zero the gradient of the function of finitely

many variables to be minimized we obtain a Galerkin projection model for

the original boundary—value problem . Similarly if we set to zero the

gradient of the function to be minimized in the finite—difference method

—
~~~~~~~~ --~~~~--

_
~~~~~~~~ - -

‘ .~~~~- -- - - -- - - - - -

-

-
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r

of the variationa l formulation , then we obtain a finite—difference model

of the origina l problem.

it has aiso been shown that certain spu me collocation procedures

arc identical to finite—difference procedures when both are applied to

the original problem . For example , using the spline space S(T1 ,2,O) of

continuous piecewise linear functions on the first—order problem (1.1)

with collocation at the middle of interval between break points yields

precise ly the finite—difference equations (3.2) if the points t~ are

the break—points and denotes the value of the spline at t~~.

At present it seems to be generally believed that the most competi-

tive methods for boundary—value problems are based on projection for the

or ig ina l  problem , finite differences for the original problem , finite

d ifferences for shooting and its variants , and finite differences for

embedding; I therefore want to look briefly at the rela tionsh ips among

these procedures. We have already seen a relationship between finite

differences and projection for the original problem , so I want to examine

finite differences for the original problem , for shooting, and for

embedding. For linear problems the relationships are very striking, since

the overall methods can be identical! For nonlinear problems the same

methods are not necessarIly identical but are very similar. Simply to

convey the idea here we look at linear first—order problems.

Consider first simple shooting for the linear scalar problem

— A(t)y+g(t), B0y(O) + 31y(1) =e

where we implement shooting by the simple finite—difference method (3.2); V

letting Z
1 

approximate y(t
1
), we get the recursion formulas appearing

just before (3.6). Suppose, to be precise, we take six points

—

~

-
-

~

-- 

~~~~~~~~i~~~~~~~~~~1~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ -~~~~~ - -~~~- -- - 
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—
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t0
0<t

1
< t

2
< t

3
< t

4
< t~~< t

6
1. Then for simple shooting we try to

find z so that choosing

Z1
z, M~Z1~1

_ P
1
Z~~+h 1~1 for l~~i~~5, B0z + B 1

Z
6 e

In shooting we solve the above recursion for Z6 in terms of z and

then use this plus the boundary condition 80
z+B 1Z6

e to select z

correctl y. If we write the above recursion and boundary condition in

matrix notation , we obtaIn

B
0 

0 0 0 0 B
1 e l

—P1 
M~ 0 0 0 0 h

1
g
1

O —P
2 M2 

0 0 0 h2g2

(5.1) 0 0 —P
3 

M
3 

0 0 h~ g3

0 0 0 -P4 
M
4 

0 Z
5 

h
4h4

0 0 0 0 —P 5 M
5 

Z
6 

h5g5

L L L

which is precisely (3.6), the equations we solved for finite differences

applied to the original problem. Thus finite differences for simple

shooting and for the original problem give the same answers. Moreover,

we can interpret the 
~~~~~~~ 

in which shooting solves for Z
6 in terms of

z Z 1 in the language of an elimination method for solving (3.6) or (5.1)

for finite differences on the original problem. In (5.1), use the (2,2) ‘

element to eliminate the (3,2) element—P
2 and divide the second row

by the (2,2) element. Next use the (3,3) element to eliminate the (4,3)

V ..—J~J~-
V ~~~~~~~~~~ - • V~~~~ ~~~~~~~~~~~~~~~~~ 
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element and divide row three by the (3,3) element . Keep ing this up

we eventually transform the matrix In (5.1) into

r B 1 0 0 0 0 Bll

~~ : : :
~~~) .  2)

X 0 0 I 0 0

0 0 0 1 0

0 0 0 0 I~~
L

where X denotes the presence of some nonzero element. The last row

of (5.2) ex; resses Z6 in terms of Z1, as in shooting. If we now

solve for between the first and last rows In (5.2) and substitute

the computed Z1 into the equations (5.2), we ob tain all the values

Z1, precisely as in shooting. Therefore , not only do we produce the

same solutions by the two procedures , but also f i n i te d if f e rences  f or

simple shooting on linear problems is computationally step bi step

equivalent wit h a particular elimination method for solving the linear

system resu1tin~ from the sane finite difference method for the original

prob lem. It is important to note above that we had to use the same

finite difference grid points t 1 for both methods. For the boundary—

value approach , these points must be chosen in advance; in shooting ,

initial—value codes usually select the grid points automatically . Thus

the two methods are identical I we ran somehow determine the appropriate

grid points in the shooting approach. This illustrates the importance

of selecting good grid points for finite differences app lied to the t
boundary—value problems .
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By a slight generalization on the preceding argument we can show

that finite differences for multiple shooting is identical step by

step with an elimination method for the finite—difference method for

the boundary—value problem. Likewise , both simple and multiple super-

position are identical with an elimInation ptocess. Somewhat more

complex is the fact that the re—orthogonalization process implemented

with finite differences is identical step by step with a solution

technique for the finite difference equations (3.6) for the original

problem ; this solution technique first eliminates as for multiple

shooting and then performs an orthogonal simularity transformation

(based on the matrices Q1 in (2.8)) so as to make all of the entries

in the matrix upper—triangu lar as in (2.8). Also it can be shown that

finite differences on the sweep method of embedding is identical with

standard Gauss elimination in (3.6).

Thus fini te differences for the original problem , for shooting and

its variants and for embedding only dif f e r  by being differen t solution

techniques for the same set of equations (3.6). This does not mean

that the methods are not very different; different solution techniques

can have drastically different results in the presence of rounding error.

What our statement does mean is that it is reasonable to concentrate on

alternatives to Gauss elimination in order to solve (3.6). Again I

observe also that finite—difference methods for shooting and embedding

have the ability to select grid points dynamically, while the finite—

difference method for the original problem selects grid points in advance.

6. ACCELERATING CONVERGENCE AND ESTIMATING ERRORS

For simplicity we begin the discussion of this topic in a simpler
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~~ttl ng than differential equations. Suppose that there Is some

marvelous number ‘1
~ 

that we wish to compute , and tha t as some posi-

t ive iarametcr h tends t - - zero we are instead able to compute some

approximation Y(h) to Y
0
. The problem of error estimation is

obviousl y that of estimating the size of the error Y(h) —Y
0
; the problem

of  acceleration is tha t of generating another scheme Y(h) for which

its error Y(h)—Y
0 

is “much ” sma l l er than Y(h)—Y
0
. The two problems

are c losely related : it e(h) is an accurate estimate of Y(h)—Y
0

then surely Y(h) zY(h)—e(h) is an accelerated estimate of Y
0~~

Y ( h )  —

(Y (h)—Y
0
), wh i le i f some Y(h) is “much ” nearer than is Y(h)

then surely e(h) EY(h)—Y(h) is very near Y(h)—Y
0 

which is the true

error. 1 wIll first phrase my discussion in terms of accelerating

onvergence.

Three convergence—acceleration devices which have been used for

boundary—value problems are Richardson extrapolation [Joyce (1971)],

iterated deferred correction f t V r t v r u  (1967)], and iterated defect

correction (Frank (~ 976)]. R ichardson e x t r ) V ~ t i o a  comp u tes bo th Y (h )

and Y(rh) for some r <1 and uses some theoretical information on the

behavior of Y(h)—Y
0 

in order to compute an improved 1(h); for differ-

ential equations this involves computations on two discretizations in

order to improve the accuracy on the less accurate of the two solutions

(the one with the more crude discretization). Both deferred correction

and defect correction are much more complicated than Richardson extra—

polation but have the advantage of avoiding computations on a refined

discretizatlon. Experiments tndh *te the deferred correction and defect

correction are more efficient than Richardson extrapolation , but the 

TT~ TT~~~~~~~~ - - _ _ _ _
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methods are too complex to explain here.

There are a number of other methods for estimating errors Y(h)—Y 0,

most of which require knowledge of the asymptotic nature of the error.

For example, if it is known that

Y(h)—Y0 
= T(Y)h~ +~~(h~~

1)

for known p > O  and for a known expression T(Y) in Y, then one can

f i r s t  compute Y(h) and then estimate the error by Th ( Y ( h ) ) h
~ 

where

T
h(y) denotes some approximation scheme for estimating T(Y), such as

-i d ivided differenc e to approximate a derivative .

Returning to the discussion of differential equations , what we really

want is an estimate of the error In approximaing a solution y(t) at

each t ;  several of the estimation schemes suggested above have been used

t -  do just that for discrete models of the origina l boundary—value problem.

In shooting and embedding we are solving initial—value problems, and most

codes fo r  such problems estimate the local or one—step error rather than

the global or total error we desire . Clearly the two errors are related ,

but it is not fair to say, as some have, tha t error estimation is easier

for initial—value problems ; the fallacy of the statement comes from

measuring two different errors.

7. ERROR CONTROL AND PARAMETER SELECTION

There would be little point to Section 6 on estimating error If we

had no use for the estimate. What we usually want is to control the

error , in the sense that we want to make the error less than some tolerance

provided by a user of our method at as low a cost as possible; usually

this means controlling the error so that it will be only a little smaller
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than the tolerance. In our li t t l e  mythical es irn~ le in Section ~ of

computing something called Y(h) to approximate Y0, once h is

chosen the error is determined ; thus to control the error in any way we

must appropriatel y select the value of our parameter h. In the real

methods we discussed in Sections 2,3, and 4 , there are m~iny paraii;eters

at our disposal. The first , of cour aV , are  the Transformed Problem ,

the Discrete Model , and the Solution Technique we choose to use . After

choosing these , we still face many ‘drirne ters . For example : with

finite differences , how many poi nt s t
1 

to use and where to place them ,

and what difference ap roximations to use ; for spline collocation , how

man y break points to use and where to place them , where to place collo-

catio n points , what degree and how smooth sp lines to use; for shooting ,

how many shooting points to use and where to place them ; et cetera .

Some methods ippear to require a uniform spacing of some mesh (break

poin t~ or collocat ion points or finite difference points); this can be

d isastrous on problems whose solutions change slowly in some region

and very rapidly In others. Selecting ihe mesh in this case is very

difficult; an Interesting idea jRussel1—Chris ti :~~ea (1978)] is to use

d ifferent uniform meshes on various subintervals of O < t  < 1 and to

stop computing in a region of the interval in which the toierance has

been met. While the user ~t a computer :ode can sometimes wisel y select

par ameters , in many cases a good choice of parameters depends on proper-

ties of the solutIon about which the user has no ideas. For this reason

an important trend In code development is the inclusion of procedures

which automatica lly select parameters in an attemp t to attain the desired

error efficiently. This is a vital research prob lem on which some

progress is being made but where much ret~iins to be done .

_ _-  — ~~~~~~~~ 
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8. CONCLUSIONS

My aim in this paper has been to exp la in b r i e f l y  wha t each of a

var iety of methods is, how me thods rela te to one another , and where are

the difficulties today that stimulate interesting research problems .

To describe what the methods are and how they relate we viewed each

r~ethod as a Solution Technique for some Discrete Model of a Transformed

Problem; this was done in the setting of two simp le model pr oblems

(1.1), (1.2) but extends readily to most other types of boundary—value

problems involving eigenvalues , multi—point boundary conditions , et

c etera . Those areas which in my opinion deserve much more study and

developmen t In clude:  numer ical ef f e c ts and e f f i c iency of d i f f e r e n t

methods of solving the linear algebraic systems that arise ; methods for

solving the special nonlinear algebraic systems that arise; comparative

perf ormance of codes imp lementing various methods on carefully chosen

classes of test problems ; and methods for estimating and controlling

global errors by automatic selection of parameters of the method.
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